Page under construction

Scope of document

This document summarizes the Processing Strategy of our CHAMP system. The CHAMP systems generate the following product families:

  • ESA IGS AC deliverables:

    • ESOC OPS Finals

    • ESOC OPS Rapids

    • ESOC OPS Ultras

  • ESOC MGNSS Finals

The product families are based on common single-constellations solution, which are stacked on Normal equation level.

The products may be found on our homepage , at GSSC and on the IGS archives . Additional information can be provided on request.


Documents:

Software System

CHAMP (Consolidated High Accuracy MGNSS Processing) is the key system of the ESA/ESOC Navigation Support Office for routinely generated GNSS-based POD and geodetic products. CHAMP is using the inhouse software EPNS (ESA Precise Navigation System) and runs on ESOC's Mission Operational Infrastructure.

General Models

Category

Topic

Value

Relativistic model

Schwarzschild terms

applied

Lense-Thirring precession

applied, IERS 2010 conventions

Geodetic (de Sitter) precession

applied, IERS 2010 conventions

Relativistic clock effects

2nd order relativistic correction for non-zero orbit ellipticity.

Gravitational time delay

applied, IERS 2010 conventions

Gravity field

Degree and order

12

Gravitational perturbations

Gravity field (static)

EIGEN.GRGS.RL05.lmp.coef, C21 and S21 computed according to IERS 2010 conventions.

Gravity field (time varying)

annual/semi-annual terms of the low coefficients

Solid Earth tides

IERS 2010 conventions

Permanent tide (tidal system)

IERS 2010 conventions

Solid Earth pole tide

IERS 2010 conventions

Ocean tides

FES-2022

Ocean pole tide

applied, model by S. Desai for C21 and S21 terms only (IERS Conventions 2010).

Lunar gravity

applied, only J2 effect considered

Third bodies

JPL DE405: all planets, Sun and Moon

EOP

Precession-nutation

IAU 2006/2000A

Celestial pole offsets

IAU 2006/2000A, daily dx and dy corrections from IERS Bulletin-A applied

Celestial pole rates

interpolating between given offsets

Subdaily nutation

prograde diurnal and semi-diurnal nutations in polar motion applied using IERS routine PMSDNUT2.F.

UT1-UTC

interpolated from IERS Bulletin A (IERS rapids)

UT1 libration

semi-diurnal UT1 libration applied using IERS routine UT1LIBR.F

Subdaily pole/UT1

The sub-daily EOP tide model from Desai & Sibois (2016; https://doi.org/10.1002/2016JB013125)

Secular pole

IERS secular pole model

Terrestrial pole offsets

interpolated from IERS Bulletin A (IERS rapids)

Terrestrial reference frame

A priori frame

ITRF2020-u2023 (IGS0OPSSNX_1994002_00U_00U_SOL.SNX.gz)

Post seismic deformation

ITRF2020-u2023

Solid Earth tides

anelastic Earth model, IERS 2010 Conventions (dehanttideinel.f)

Permanent tide

zero-frequency contribution left in tide model, NOT in site coordinates (conventional tide-free).

Solid Earth pole tide

IERS 2010 conventions, mean pole removed by IERS 2010 mean pole model.

Ocean tides

IERS 2010 conventions, site-dependent amps/phases from free ocean tide loading provider (Bos and Scherneck, 2017) for EOT11A tide model including centre of mass correction, NEU site displacements computed using HARDISP.F from D.Agnew

Troposphere

Hydrostatic a priori model

Saastamoinen, pressure and temperature from GPT model

Hydrostatic mapping function

GMF dry (Boehm et. al, 2006)

Wet mapping function

GMF wet (Boehm et. al, 2006)

Gradient mapping functions

1/(sin(e) * tan(e) + 0.0032)

Ionosphere

First order effect

Accounted for by dual-frequency obs. in linear combination.

Observations

Sampling

300s (30s for clocks)

Elevation cutoff angle

10degrees

Weighting of observations

elevation-dependent

Observation type

Ionosphere-free linear combination of dual-frequency.

GNSS receiving antenna

igs20.atx (offsets from ARP and elevation- and azimuth dependent PCVs applied)

Phase wind up

applied according to Wu et al. (1993)

Orbit integration

Integrator details

Adams-Bashforth/Adams-Moulton 8th order prediction-correction (multistep) method initialization: 8th order Runge Kutta (RKF).

Integrator step size

120 steps per revolution

Parametrisation

Earth orientation

daily X-pole, Y-pole, pole rates, LOD

Clock sampling

30s

Transmitter & Receiver clocks

at each epoch, aligned to ESA UTC stations.

Inter-System clock bias

Estimated per station per constellation. Zero-mean constraint over all stations. Galileo: ESA UTC station biases are constrained to calibration values. GLONASS: Estimated per station per satellite.

Satellite orbits

deterministic positions and velocities (300s sampling)

Arc length

24h

Troposphere

Zenith delay estimated as linear parameters every 1 hrs, North and East gradients as linear parameter per day.

Empirical accelerations

1 set per arc from the enhanced CODE orbit model (Springer, 1999): D0, Y0, B0, Bcos, Bsin

1/rev empiricals (CPR)

1 set per arc in along-track: A0, Acos, Asin

Phase cycle ambiguities

Adjusted except when double difference ambiguities can be resolved confidently. Integer ambiguity resolution scheme from GFZ.

Constellations

Constellation

Galileo

GPS

GLONASS

BeiDou

QZSS

Block

IOV

FOC

IIA

IIR/IIF/IIIA

BeiDou-3

QZSS-1R

QZSS-2I

QZSS-2G

Signals

L1C-L5Q

L1W-L2W

L1P-L2P (Rapid+Ultra: L1C-L2C)

L1P-L5P

L1L-L5Q

Orbit estimation

Independent

Independent

Independent

Independent

Combined GPS+QZSS process

Centre of Mass

GSC values

IGS Satellite Metadata

IGS Satellite Metadata

IGS Satellite Metadata

Cabinett Office values

PCO

esa23.atx

esa23.atx

esa23.atx

esa23.atx

esa23.atx

PCV

esa23.atx

esa23.atx

esa23.atx

esa23.atx

esa23.atx

Attitude model

Nominal yaw steering with noon/night turn model.

Nominal yaw steering

Nominal yaw steering with noon/night turn model (Kouba 2008, Dilssner 2010, Dilssner et al. 2023).

Nominal yaw steering with noon/shadow model (Dilssner et al. 2011).

Nominal yaw steering with noon/night turn model.

Nominal yaw steering with noon/night turn model.

Continuous orbit normal mode.

A priori model (SRP, Albedo, IR)

Manufacturer values published by GSC (Box-Wing)

IGS Satellite Metadata (Box-Wing)

IGS Satellite Metadata (Box-Wing)

ESOC estimates (Box-Wing)

Cabinett Office values (Box-Wing)

Power Thrust [W]

120

250

IGS Satellite Metadata

IGS Satellite Metadata

240

Cabinett Office values

Applied Code Bias

-

P1C1 correction based on ESA0OPSFIN_DCB.BIA (zero-mean applied)

-

-

-

TEC estimation

used

used

used

MEOs used

-

Published Products

Filename

Period

Sampling

Latency [h]

ESA0OPSFIN_DCB.BIA

240

ESA0MGNFIN_YYYYDDD0000_01D_01D_ERP.ERP

01D

01D

240

ESA0MGNFIN_YYYYDDD0000_01D_01D_SOL.SNX

01D

01D

240

ESA0MGNFIN_YYYYDDD0000_01D_01D_SUM.SUM

01D

01D

240

ESA0MGNFIN_YYYYDDD0000_01D_01H_TRO.TRO

01D

01H

240

ESA0MGNFIN_YYYYDDD0000_01D_05M_ORB.SP3

01D

05M

240

ESA0MGNFIN_YYYYDDD0000_01D_30S_CLK.CLK

01D

30S

240

ESA0OPSFIN_YYYYDDD0000_01D_01D_ERP.ERP

01D

01D

240

ESA0OPSFIN_YYYYDDD0000_01D_01D_SOL.SNX

01D

01D

240

ESA0OPSFIN_YYYYDDD0000_01D_01D_SUM.SUM

01D

01D

240

ESA0OPSFIN_YYYYDDD0000_01D_01H_TRO.TRO

01D

01H

240

ESA0OPSFIN_YYYYDDD0000_01D_02H_GIM.INX

01D

02H

240

ESA0OPSFIN_YYYYDDD0000_01D_05M_ORB.SP3

01D

05M

240

ESA0OPSFIN_YYYYDDD0000_01D_30S_CLK.CLK

01D

30S

240

ESA0OPSRAP_YYYYDDD0000_01D_01D_ERP.ERP

01D

01D

2

ESA0OPSRAP_YYYYDDD0000_01D_01D_SUM.SUM

01D

01D

2

ESA0OPSRAP_YYYYDDD0000_01D_01D_SOL.SNX

01D

01D

2

ESA0OPSRAP_YYYYDDD0000_01D_01H_TRO.TRO

01D

01H

2

ESA0OPSRAP_YYYYDDD0000_01D_01H_GIM.INX

01D

01H

11

ESA0OPSRAP_YYYYDDD0000_01D_02H_GIM.INX

01D

02H

11

ESA0OPSRAP_YYYYDDD0000_01D_05M_ORB.SP3

01D

05M

2

ESA0OPSRAP_YYYYDDD0000_01D_30S_CLK.CLK

01D

30S

2

ESA0OPSULT_YYYYDDDHH00_01D_01D_SUM.SUM

01D

01D

2

ESA0OPSULT_YYYYDDDHH00_02D_01D_ERP.ERP

01D

01D

2

ESA0OPSULT_YYYYDDDHH00_02D_01D_SOL.SNX

02D

01D

2

ESA0OPSULT_YYYYDDDHH00_02D_05M_ORB.SP3

02D

05M

2