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the calibration transferred to the ESOC GNSS chain
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characterised by a considerably shorter latency for the previous
observation day as well as a longer data coverage (24h) than the
official 1GS rapid products. As one of the most active IGS Analysis

Figure 5: Real-time software for stability monitoring
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a regular time interval.
Figure 6: Post-processing software for stability monitoring

Due to the given AHM short-term stability and the
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Figure 2: ESOC time scale performance with regard to
UTC(PTB) for last 4 months
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Figure 4: Verification of ESA’s rapid clock products performance
by 1GS AC Coordinator (ACC)
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Figure 7: Automatic generation of BIPM clock files

%

o
-

Operational Needs, Benefits and Applications
» Operational UTC time scale generation capability enables full control over ESOC’s entire precise orbit and clock product generation chain
» Benefits for several existing ESA Precise Orbit Determination (POD) operations, especially for Earth observation satellites, Galileo and EGNOS
» Risk mitigation in the context of 3rd party contracts with high availability requirements for GNSS product supply
» Extension of ESOC’s existing product range as well as opening-up of future product opportunities

» Application as centralised time & calibration reference for ESA’s Deep Space Stations (DSS) in New Norcia (Australia), Cebreros (Spain) and Malargue (Argentina)

Evolution

For the future, it is planned to enhance the time scale generation system with additional clocks (e.g. Cs clocks), to add redundancy to the steering and the post-processing of the data, as well
as to put additional monitoring equipment for the phase and time offsets.
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