—

ESA UNCLASSIFIED - For Official Use

— T T, SR | 5 = T



Outline

- Introduction

- Effect of 10V spacecraft metadata on Galileo POD
- Antenna phase center parameters

- Yaw steering law

- Summary & Conclusions

— Il bz ™ == " Il o =3Il T2 15

(hd]

=
17

v
0
o

Slide 2

European Space Agency



=
7

///
A

Introduction =~ CSa
- December 2016: GSA disclosed spacecraft metadata for Galileo 10V

* Publicly available through European GNSS Service Center (GSC) web site
(https://www.gsc-europa.eu/support-to-developers/galileo-iov-satellite-metadata)

 Includes phase center parameters for navigation antenna (NAVANT), signhal group
delays, yaw steering law, as well as surface geometry and material properties suitable
for analytical “box-wing” (BW) radiation pressure force modeling

- 10V BW model has been generated for use in NAPEOS, ESOC’s state-of-the-art
software package for high-precision orbit determination
 Represents satellite as simple six-sided “box” with two attached “wings”
 Allows for a priori computation of SRP and Earth albedo force

* Accounts for periodically changing orientation of satellite’s *
L \\

elongated cuboid body in Sun-orientated “DYB” frame
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Introduction (cont’d) dcesa

10V box-wing model IOV box-wing model
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- BW model produces twice-per-rev signal in D with peak-to-peak amplitude up
to 20 nm/s2 and once-per-rev signal in B with peak-to-peak amplitude up to 4
nm/s2, depending on Sun elevation angle
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Evaluate effect of IOV metadata on Galileo POD &&iesa

- Reanalyze full history of Galileo tracking data the global International GNSS
Service (IGS) network has collected since 2012

- Generate orbit and clock solutions based on widely used Empirical CODE Orbit
Model (ECOM) with and without 10V a priori BW model

- Use metadata as well as standard 1GS-recommended phase center model
(“igs08.atx) for IOV NAVANT

- Analyze impact on following metrics: phase residuals, laser ranging residuals,
satellite clock residuals, orbit overlap residuals, narrow-lane ambiguities
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SLR residuals

Galileo 1OV orbits based on ECOM1-only
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- Reveal radial decimeter-level errors in ECOM1-only orbits
- Factor two improvement; BW model reduces RMS from 0.084 to 0.037 m

- Mean bias of -0.010 = 0.082 m without and -0.017

{cesa

0.2

One-way SLR residuals [m]

+ 0.034 m with BW model;

anticipated to be zero when taking Earth IR + antenna thrust into account
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Satellite clock idual a

atellite CIOCK resiauals &QQ—-

Galileo IOV clocks based on ECOM1-only Galileo IOV clocks based on ECOM1+BW

60 0.2 60 0.2
T 40 E = 40 E
[e)] w =] w
S 01 € S 01 8
o e
‘;é:) 20 'g % 20 'g
S 0 00 5 S 0 00 8
<] o o ke]
kS o § o
o kel
s 20 8 5 20 ks
= -01 & c -01 &
N -40 3 @ -40 i
o =}

-60 -0.2 -60 -0.2

0 60 120 180 240 300 360 0 60 120 180 240 300 360
Satellite orbit angle [deg] Satellite orbit angle [deg]

- Capitalize on satellites’ ultra-stable passive hydrogen masers (PHMs) and use
clock estimates after first-order fit as measure for orbit modeling accuracy

- Similar once-per-rev signature as seen before in SLR residuals
- Factor two improvement in RMS, from 0.089 m w/o to 0.038 m w/ BW model
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Day-boundary orbit overlap residuals &&iesa

Day-boundary orbit overlap differences (3D) Power spectral density Power spectral density
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- Factor two improvement in all three directions, radial, along, and cross
e Peaks near 1st and 3" harmonic of 10-day ground track repeat cycle greatly reduced
« 0.118 m without and 0.062 m with BW model (3D-RMS)

- Improvement from “free” to “fixed” is 23% without and 43% with BW model

= BW model facilitates Galileo integer ambiguity resolution
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Ambiguity resolution performance

Galileo IOV NL double differences below 0.1 cycles
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ECOM1+BW
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- Five-to-ten-times-tighter distribution of NL fractionals when using BW model

- Number of NL double differences closer than 0.1 cycles from nearest integer

constantly around 90% now
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Carrier phase residuals

igs08.atx igs08.atx IOV_NAVANT.atx
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- 4% lower phase residual RMS and 0.6% increase in number of measurement
points after replacing “igs08.atx” with “IOV_NAVANT.atx”

- Three-fold antenna pattern emerges after least-squares spherical harmonic fit
to igs08.atx residuals
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(s,
Antenna phase center parameters {cesa

- Phase center offset (PCO) and variation (PCV) parameter for each signal and

spacecraft antenna inferred from pre-launch anechoic chamber measurements
(https://www.gsc-europa.eu/sites/default/files/sites/all/files/I0OV_NAVANT.atx)

- Evaluate phase center parameters using Galileo live signals

«  Exploit full history of IGS tracking data
(2012-2016) to estimate PCOs and PCVs

. Process E1-E5a, E1-E5b, and E1-E5 data

 Use spherical harmonics (8,3) to capture
three-fold antenna pattern

¢ Combine all daily antenna and station
coordinate parameters on NEQ-level

© ESA / EADS Astrium UK

« Compare final PCO and PCV estimates
against pre-launch values
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Antenna phase center offsets

x-offsets wrt center-of-mass
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- Mean difference (RMS) of 3 cm for x-PCOs, 1 cm for y-PCOs, 8 cm for z-PCOs
- Values match fairly well with rounded igsO8.atx mean (Steigenberger 2016)
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Antenna phase center variations
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Yaw steering law

- Yaw steering angle v, is rotation angle
around Earth-pointing spacecraft Z axis

- Requirements on nominal yaw steering:

e« +Y axis perpendicular to Sun direction

- +X axis against Sun to prevent heat-critical D
clock payload from being exposed to solar radlatlon / , © 2000 Astrium GrmbH

- Modified yaw steering when satellite and Sun vector are close to collinearity
 Pseudo Sun vector which keeps minimum angular distance to spacecraft Z axis
* Produces milder profile with yaw rate < 0.2 deg/s and acceleration < 0.46 mdeg/s2
- Yaw angle can be evaluated by way of reverse point positioning (RPP)

« Technique takes advantage of 17 cm horizontal offset of IOV NAVANT from
spacecraft’s yaw axis to estimate yaw angle
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Yaw steering law (cont’d)

GSAT0101: Noon-turn maneuver GSAT0102: Midnight-turn maneuver
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Yaw angle estimates show agreement with modified steering law within 5° RMS

Scatter attributable to uncertainties in RPP, does not reflect real yaw attitude

Yaw angle constructed from telemetry closely follows modified steering law too
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Summary & Conclusions &&iesa
- Using IOV metadata in current POD approach substantially improves the orbit

 Overlap residuals indicate orbit precision of 6 cm (3D-RMS)

« One-way SLR residuals indicate radial orbit accuracy of better than 4 cm (RMS)
- Improvements are largely due to BW model

 Factor two improvement in SLR, clock and orbit overlap residuals

« NL fractionals cluster more tightly around zero, facilitates integer ambiguity resolution
- Antenna phase center model:

« Small reduction in phase residual RMS over previously available model (“igs08.atx”)

« Good agreement with phase center estimates: 1-8 cm in PCOs, 1 mm in PCVs (RMS)

 Especially relevant for GNSS-based realization of TRF scale, independent of SLR/VLBI
- Yaw attitude model:

« RPP estimates confirm close agreement with theoretical law and spacecraft TM
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