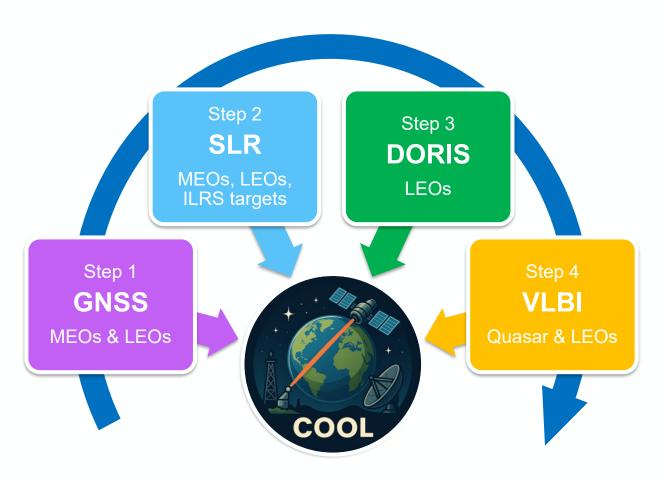


ESA's efforts towards a Combination On the Observation Level (COOL)

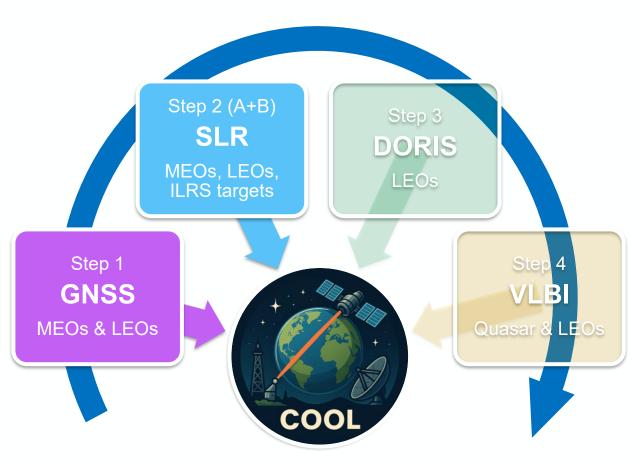
I. Sermanoukian¹, F. Gini¹, T Springer¹, M. Otten¹, F. Dilssner¹, V. Mayer¹, B. Traiser¹, S. Bruni¹, J.-C. Berton¹, F. Zimmermann¹, W. Enderle¹, S. Gidlund² and <u>E. Schoenemann¹</u>

¹Navigation Support Office @ ESA / ESOC ²Genesis Project @ ESA / ESTEC


IAG Scientific Assembly, Rimini 1-5 September 2025 02/09/2025

ESA UNCLASSIFIED – Releasable to the Public

Combination On the Observation Level - COOL


Main objectives:

- Combine all 4 geodetic techniques together in one single processing run
- Highlight the strengths of each technique
- Detect and reduce technique-specific systematics
- Exploit Normal Equation Stacking developed for Consolidated High-Accuracy Multi-GNSS Processing (CHAMP - 2024)
- Prepare the path, software and knowledge to achieve the Genesis mission goals

UNCLASSIFIED – Releasable to the Public

Combination On the Observation Level - COOL

Where we are now:

Step 1

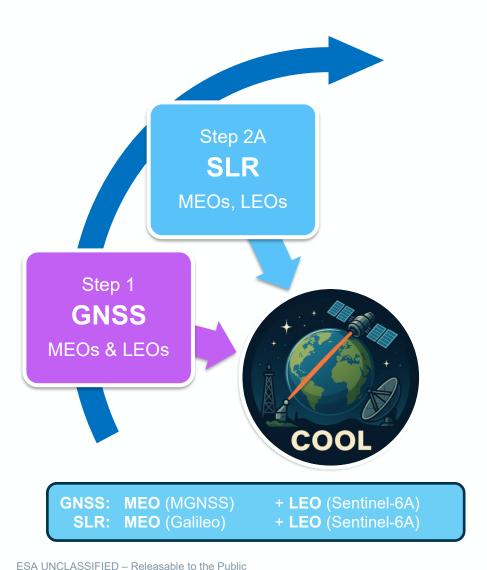
GNSS + LEOs*

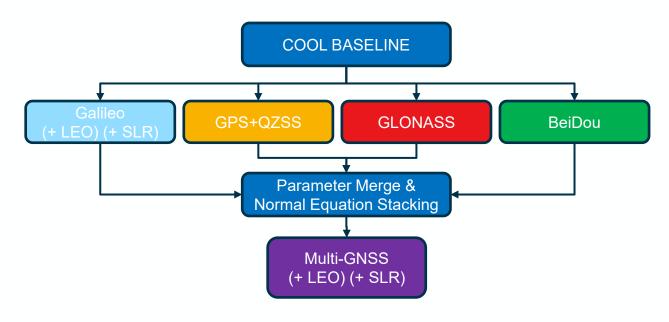
- **LEOs** added to **Galileo** processing
- **LEOs** added to the **Multi-GNSS** processing

Step 2A

SLR to Galileo and LEOs

SLR observations to Galileo and LEOs added to the GNSS processing (previous step)


Step 2B

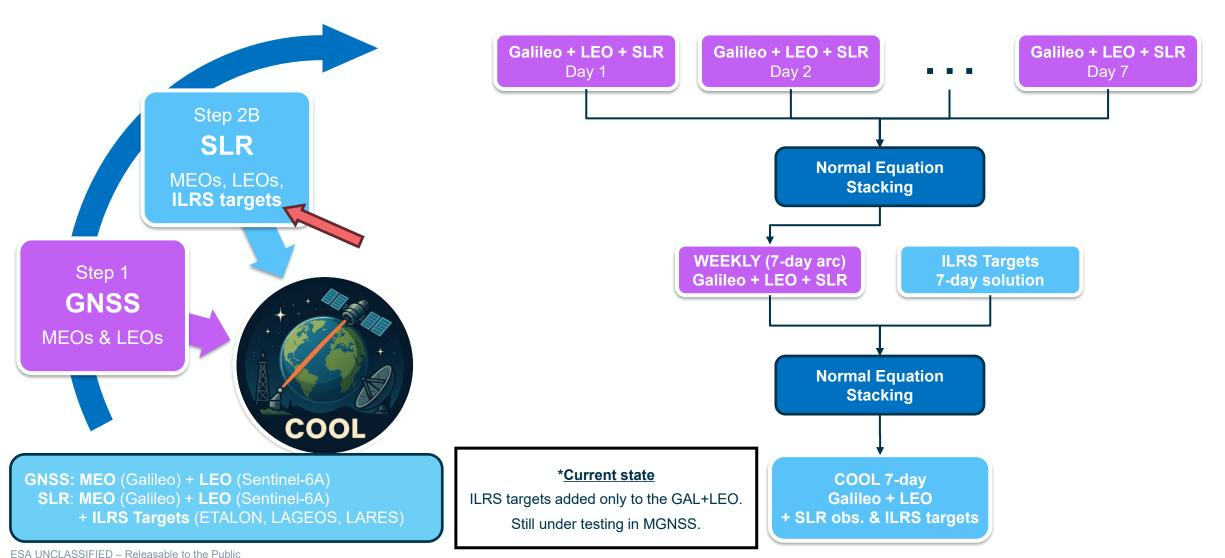

SLR to ILRS targets**

- SLR observations to ILRS targets added to the GNSS+SLR processing (previous step)
- * LEO = GNSS from Sentinel-6A (Galileo only obs.)
- ** SLR = SLR from GNSS and LEO satellites
- ** ILRS = SLR from ETALON, LARES & LAGEOS

COOL: GNSS & SLR (GNSS and LEO)

Observations selection

At this step only SLR to GNSS and LEO satellites is included


Observations sampling

- Standalone constellations (300s)
- MEO+LEO combinations (30s)

ESA UNCLASSIFIED - Releasable to the Public

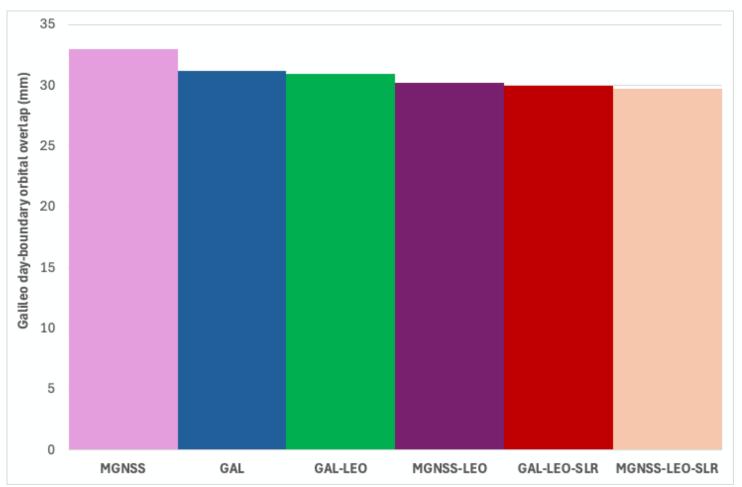
COOL: Galileo* & SLR (including ILRS targets)

Combination On the Observation Level - COOL

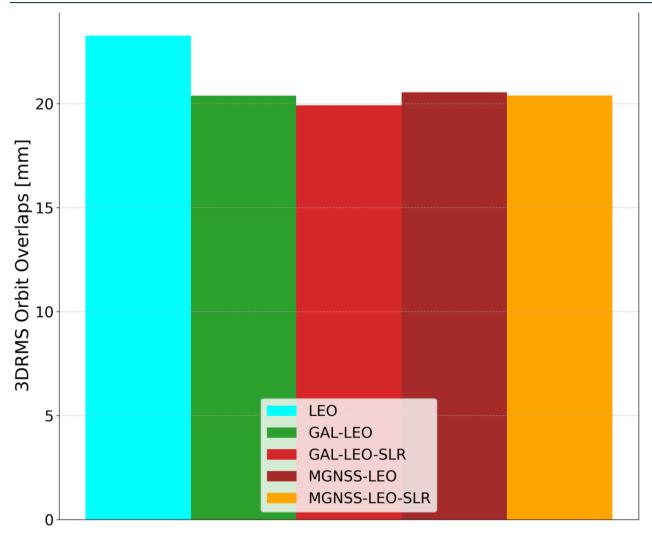
Solution Label	Description					
GAL	Galileo only (GNSS only)					
GAL-LEO	Galileo + LEO (GNSS only)					
GAL-LEO-SLR	Galileo + LEO + SLR - SLR: Galileo and LEO					
GAL-LEO-SLR-ILRS	Galileo + LEO + SLR + ILRS - SLR: Galileo and LEO - ILRS: LARES-2, 2xLAGEOS, 2xETALON					
MGNSS	All GNSS constellations (GNSS only)					
MGNSS-LEO	All GNSS + LEO (GNSS only)					
MGNSS-LEO-SLR	All GNSS + LEO +SLR - SLR: Galileo and LEO - ILRS targets not yet included					

^{*} First 200 days of 2024 were processed

NCLASSIFIED - Releasable to the Public



Satellite Orbit Overlaps for Galileo

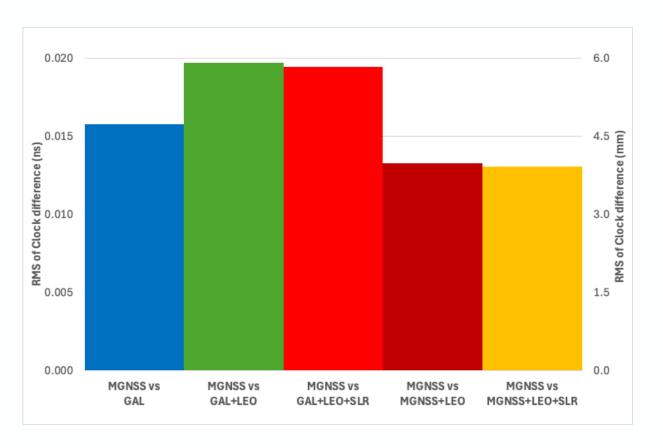

Main findings:

- Adding the LEO improves the GNSS orbit consistency, both Galileo and MGNSS
- Overall, the multi-satellite (GNSS, LEO) and multi-technique (GNSS & SLR) combination is superior in terms of Galileo orbit quality

^{*} See Backup slide for Galileo and LEO satellite specific results 7

Satellite Orbit Overlaps for LEO: Sentinel-6A

*LEO refers to ESA's Sentinel PPP solution, submitted to the Copernicus Regular Service Review


Main findings:

- Combining the LEO with Galileo considerably improves the LEO orbit consistency (20%)
- The addition of the SLR data further improves the LEO orbital consistency
- When combined with other constellations (both in case of GNSS-only and GNSS+SLR) the LEO orbit degrades marginally, but remains at the same level
- Overall, the multi-satellite (GNSS & LEO) and multi-technique (GNSS & SLR) combination is superior in terms of LEO orbit quality

^{*} See Backup slide for Galileo and LEO satellite specific results 8

Clock comparison against Multi-GNSS solution

Clock differences

- Adding a single LEO receiver changes the results significantly, at the 35% level, which shows the power of including GNSS LEOs in GNSS solutions.
- SLR impact seems to be limited (after already including the LEO)
- We firmly believe that adding the GNSS LEO and the SLR observations improves the GNSS clocks
 - To be proven!

^{*} See Backup slide for Galileo satellite specific results

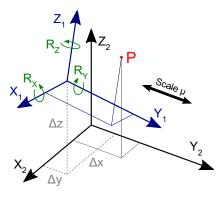
Global Earth Rotation Parameter estimates

The following tables show the mean and standard deviation of the ERP estimates with respect to IERS EOP C04

- The Galileo and multi-GNSS solutions provide an almost unbiased solution for Length Of Day
- Incorporating the LEO into the solution primarily impacts the Polar estimates, leading to a substantial decrease in the mean but with a higher standard deviation
- SLR to Galileo and LEO do not have a significant impact on ERPs estimates
- The combination with the ILRS-targets slightly differs from the IERS solution. Cause still under investigation

Solution	Length of Day [µs]	X-Pole [mas]	Y-Pole [mas]
Galileo only	-0.02 ± 7.63	7.12 ± 13.96	15.34 ± 8.52
Galileo + LEO	0.92 ± 7.36	-0.11 ± 28.91	8.77 ± 18.24
Galileo + LEO + SLR	0.89 ± 5.73	-0.81 ± 29.29	8.66 ± 18.48
Galileo + LEO + SLR + ILRS	0.65 ± 10.63	4.91 ± 15.11	15.37 ± 8.77
MGNSS	-0.65 ± 5.62	10.39 ± 8.73	12.03 ± 8.75
MGNSS + LEO + SLR	0.66 ± 5.73	6.75 ± 12.65	13.55 ± 6.88

ESA UNCLASSIFIED – Releasable to the Public



Network ITRF alignment – Geocentre estimates

 ITRF alignment based on the common IGS20 and ILRS core stations, considering the origin of the ITRF2020u2023 as the real Geocentre. Up to 200 GNSS and 14 SLR stations overall

Helmert Transformation conditions						
Reference Case (default)	Free Translation Case					
No-Net-Translation Condition	Free Translation					
No-Net-Rotation Condition	No-Net-Rotation Condition					
Free scaling	Free scaling					

- The comparison between these cases shows how stable the origin (Geocentre) of the NNR solutions is
- The addition of LEO (S6A) and, additionally the SLR, brings the solutions closer to the ITRF origin

Cases (units are mm)	Galileo	Galileo + LEO	Galileo + SLR	Galileo + LEO + SLR	Galileo + SLR + ILRS	Galileo + LEO + SLR + ILRS	MGNSS	MGNSS + LEO + SLR
Geocentric offset 3D	13.06 ± 5.73	4.72 ± 1.84	8.63 ± 3.70	4.63 ± 1.83	6.82 ± 3.45	4.07 ± 2.05	6.13 ± 2.53	4.61 ± 2.01
X Y Z	0.08 ± 8.41 -1.82 ± 8.87 -2.12 ± 6.87	0.13 ± 2.24 -2.63 ± 2.00 -0.47 ± 3.08	0.01 ± 4.08 -1.01 ± 3.63 -5.01 ± 5.70	0.16 ± 2.22 -2.60 ± 2.06 -0.43 ± 2.95	0.26 ± 3.88 -0.81 ± 2.99 -4.18 ± 4.14	-0.14 ± 1.67 -1.84 ± 2.94 0.14 ± 2.54	1.07 ± 3.17 -0.20 ± 2.66 -2.61 ± 4.36	0.16 ± 2.25 -2.39 ± 2.05 -0.71 ± 3.14

ESA UNCLASSIFIED – Releasable to the Public

Conclusions

- The addition of one GNSS receiver in LEO into a network of 200 ground-based receivers improves the solution:
 - Orbit overlaps are significantly enhanced, improving consistency and precision
 - Clock estimates show notable changes (likely improvements) pending further validation
 - The Polar Motion estimates within the Earth Rotation Parameters (ERP) show improved accuracy with respect to IERS, while their precision decreases
 - The Geocenter estimates is more consistent with the IERS and exhibit increased stability
- SLR observations to both Galileo and LEO further improve the solution
- The inclusion of ILRS targets is currently under investigation. First results show that the Geocentre estimates improve, whereas the ERPs estimates slightly degrade
- Besides being COOL, this work lays essential ground for the Genesis mission
- Only with hands-on implementation, missing elements can be uncovered

Next steps:

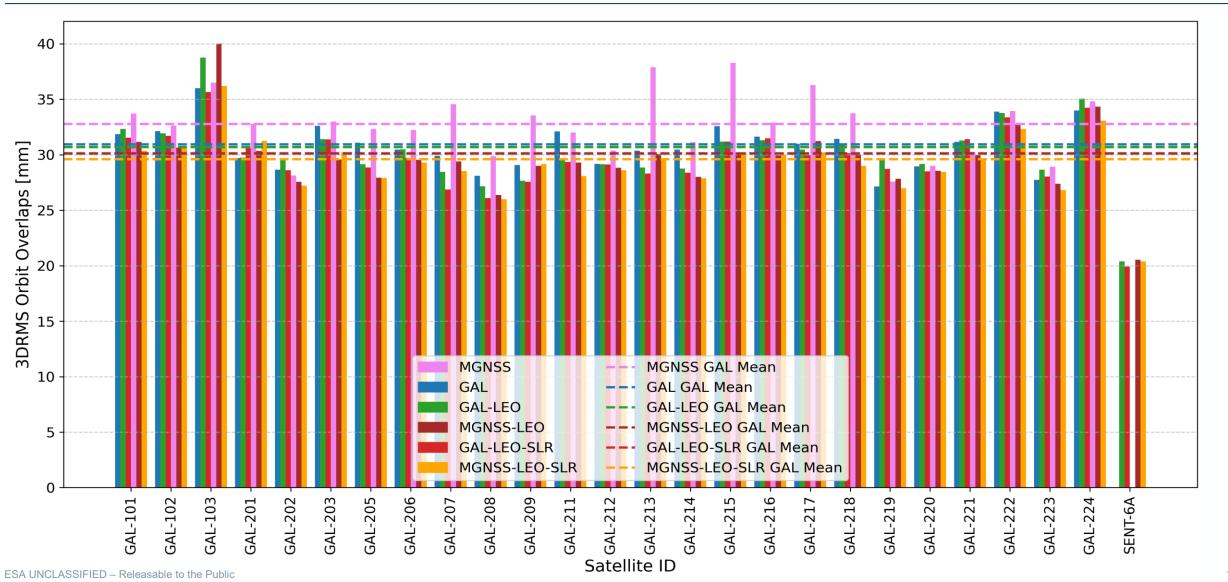
- Galileo Z-offset and ITRF scale validation are underway, incorporating estimated biases from SLR and ILRS
- DORIS and VLBI integration are next, with active development of VLBI-to-satellite functionality in our software

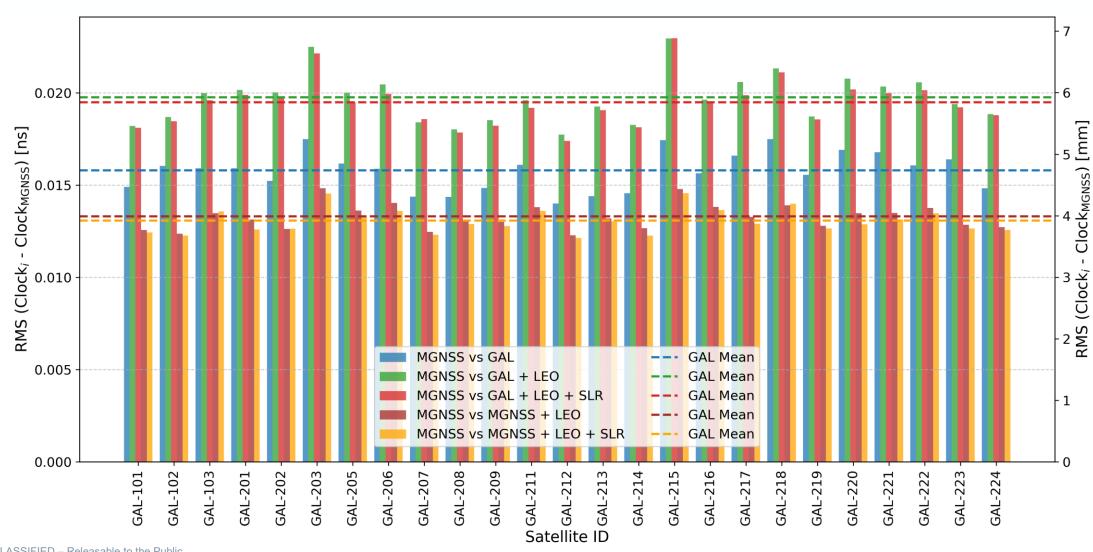
JNCLASSIFIED – Releasable to the Public

Thank You for your Attention!

Questions and feedback are welcome!

BACKUP slides




Galileo satellite Orbit Overlaps: satellite specific results

Galileo Clock comparison VS Multi-GNSS: satellite specific results

