

→ THE EUROPEAN SPACE AGENCY

Evolution of Precise Navigation Products at ESA

<u>Frank Zimmermann</u>¹, Iván Sermanoukian², Francesco Gini¹, Erik Schönemann¹, Tim Springer³, Michiel Otten³, Florian Dilssner³, Volker Mayer⁴, Birgit Traiser⁴

¹ ESA/ESOC, Darmstadt, Germany
² VisionSpace Technologies GmbH, Darmstadt, Germany
³ PosiTim UG, Darmstadt, Germany
⁴ LSE Space GmbH, Darmstadt, Germany

European Navigation Conference (ENC) 2025, Wrocław, Poland Session on Precise Navigation Products and Galileo HAS – 21/05/2025

The Navigation Support Office at ESOC

Products & Services

Precise Navigation Products

- High-accuracy GNSS orbits and clocks (batch processing and real-time)
- Precise Orbit Determination of satellites ranging from Low Earth Orbit (LEO) via High Eccentric Orbit (HEO) to Lunar Orbit

Galileo Terrestrial Reference Frame (GTRF)

- Dedicated reference frame, computed based on Galileo infrastructure
- Requirement that GTRF remains aligned with ITRF within 3 cm (95.4%)

Earth Orientation Parameters (EOP)

- EOP data provides the link between the coordinate systems on Earth and in space.
- Represent a critical input for Precise Orbit Determination

Coordinated Universal Time (UTC)

 We operate the Timing Facility at ESOC, where local timescale generation is based on two active hydrogen masers operated in a thermally stable environment.

🚍 🔜 🛃 🔚 🚍 🔚 🚍 📕 🏥 🚍 📲 🚼 🚍 📲 🔤 🔤 🚳 🔽 🚺 🗮 🗮 ன ன 🖓

Contribution to International Geodetic Services

esa

- GNSS products, contributing to IGS
 - Constellation-wise processing with Normal Equation stacking
 - CHAMP (Consolidated High Accuracy Multi-GNSS Processing)
 - SLR products:
 - SLR targets: contributing to ILRS
 - SLR to MEOs & LEOs for validation purposes
 - **DORIS** products
 - DORIS-equipped LEOs: contributing to **IDS**
- VLBI products:
 - VLBI to Quasars and *soon* to contribute to **IVS**

ESA UNCLASSIFIED – Releasable to the Public

Genesis – At the Foundation of Navigation

ESA UNCLASSIFIED – Releasable to the Public

Combination On Observation Level (COOL)

- Combine satellite-geodetic techniques on observation level
- Process techniques together in one run
- Apply Normal Equation Stacking approach developed for CHAMP
- Make use of different strengths and weaknesses of techniques
- Detect and reduce technique-specific systematic behaviour
- Implemented in one software package (EPNS)

Genesis Data PROcessing, Archiving and Distribution

_____ II + ____ II + ____ II + ____ II + ____ II + II +

Roadmap to Combination On the Observation Level

Results for Combined MEO & LEO POD Processing

→ THE EUROPEAN SPACE AGENCY

Temporal stability across 24h arcs: Satellite Orbit Overlaps for Galileo

- Improved orbital consistency wrt. Galileo-only solutions when using more than 120 ground stations along with Sentinel 6A
- Changes in temporal data sampling do not significantly impact the Galileo-only processing, unless the selected time step does not provide enough observations per pass for the LEO satellites.
- Overall reduction in the individual component overlaps, independent from direction (radial, along- and cross-track)

MGNSS = Galileo + GPS/GLONASS/QZSS/BeiDou

Processing settings:

- Duration: Year 2024 (366 days)
- Arc length: 24h
- Reference Frame: ITRF2020 alignment

Results for Combined MEO & LEO POD Processing

Temporal stability across 24h arcs: Satellite Orbit Overlaps for Galileo orbital planes

 A more detailed analysis of the selected COOL solution along with the CHAMP references shows larger improvements in satellites in either B or C planes, while A and the 2 eccentric satellites (grouped in plane X) do not benefit as much.

Results for Combined MEO & LEO POD Processing

Temporal stability across 24h arcs: Satellite Orbit Overlaps for Sentinel-6A

- Increased relevance of the temporal data sampling for Sentinel-6A within the combined COOL approach, as there is a clear improvement from 60 to 30 second sampling, even better than the regular Galileo-only Sentinel-6A PPP with 24h arcs.
- The largest reductions, up to 50% from the original values, are in the radial and along track axes, with smaller improvement in the cross-track axis.

Processing settings:

- Duration: Year 2024 (366 days)
- Arc length: 24h
- Reference Frame: ITRF2020 alignment

→ THE EUROPEAN SPACE AGENCY

Effects on Earth Orientation Parameters

Impact on the Earth Orientation Parameter (EOP) estimates (e.g. X-Polar Motion Rate)

Satellite constellation	# Stations	Sampling	Information	Mean X-Pole rate bias [ms]	STD X-Pole rate difference [ms]	Drift X-Pole rate difference [ms/year]
Galileo	200	300s	Individual Reference Case	0.0340	0.0761	0.0106
Galileo + Sentinel-6A	200	30s		0.0231	0.0550	-0.0367
MGNSS	200	300s	Current IGS AC output	0.0562	0.0355	0.0008
MGNSS + Sentinel-6A	200	300s/30s		0.0381	0.0362	-0.0094

⇒ The introduction of Sentinel-6A can improve the Polar Motion rate estimates w.r.t. IERS EOP20C04 in terms of mean bias and standard deviation, while increasing the yearly drift for 2024.

Reference Scenario Orbit Overlaps – SLR Addition

Introduction of SLR observations to the COOL processing, both to Galileo and Sentinel-6A satellites

• Maximum number of SLR stations: 17

Result:

- Further improvements compared to adding Sentinel-6A into the Galileo-only solution in terms of temporal stability
- Additional improvement independent from direction

Processing settings:

- Duration: Year 2024 (366 days)
- Arc length: 24h
- Reference Frame: ITRF2020 alignment

Station Coordinates Analysis

Station coordinate differences are computed with respect to the a priori realisation of the IGS cumulative solution aligned to the ITRF2020. As a result, for both COOL cases with and without SLR contribution:

- Major distribution of differences is located between 3 and 6 mm, as already the case with the Galileo-only reference.
- 97+ % differences below the 1cm-level

ESA UNCLASSIFIED - Releasable to the Public

Summary and Way Forward

- The Navigation Support Office contributes to International Geodetic Services (IGS, ILRS, IDS, IVS*).
- We apply constellation-wise processing with Normal Equation stacking implemented in CHAMP (Consolidated High Accuracy Multi-GNSS Processing), which is the official ESA IGS solution since February 2025.
- We have been implementing a methodology for Combination On Observation Level (COOL), dealing with the inconsistencies of the involved geodetic techniques.
- For a combination of GNSS & SLR, both for MEO & LEO satellites, we could already demonstrate a performance improvement in precise orbit determination.
- Solution consistency is demonstrated through smaller deviations at orbit overlaps.
- The Earth Orientation Parameter estimates are improved w.r.t. the Polar Motion Rates (external validation).
- ▶ We plan to support the Genesis mission with our POD processing capabilities.
- ► As IGS Analysis Centre, we plan to include LEO satellites and Genesis into our current IGS GNSS processing.

ESA UNCLASSIFIED – Releasable to the Public

GSSC Now – Navigation Science Digital Platform

+

Thank you!

frank.zimmermann@esa.int esa.int/Applications/Satellite_navigation/Genesis gssc.esa.int navigation-office.esa.int/

navigation-office.esa.int/Products.html

ESA UNCLASSIFIED – Releasable to the Public

→ THE EUROPEAN SPACE AGENCY